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The possibility is examined of obtaining thermodynamic relationships of a dif- 
ferent kind for an ideal (perfect) gas and equilibrium radiation on the basis 
of applying generalized analysis. 

Generalized analysis is utilized comparatively rarely in thermodynamics. The exception 
is the division devoted to studying specific forms of the equation of state, i.e., the prob- 
lem about its substance is not thermodynamic. Specific information about the properties 
of a substance are introduced into thermodynamics from outside. It turns out to be possible 
to set up certain substantial demands with respect to the structure of the equation of state 
within the framework of thermodynamics but not to determine the form of the function at all. 

The problem of the equation of state, and in a more general formulation of the methods 
of predicting and calculating the thermodynamic and transfer properties of substances, is 
with its bibliography (see [i]) an independent scientific direction substantially. It is 
understood that thermodynamic investigation facilities are utilized quite extensively here, 
that permit not only any relationships characterizing the substance properties to be obtained, 
but also the setting up of a connection between the most diverse quantitative data obtained 
experimentally or borrowed from other divisions of physics. 

Investigation of the problem under consideration is separated into two main directions. 
Extensive utilization of an electron computer is characteristic for the first of them, where- 
upon selection of the mode of representing the experimental data is subjected primarily to 
requirements of convenience of machine processing. This would result in the appearance of 
approximations in the form of polynomials with a large number of individual coefficients 
(for instance, the equation of state of water contains 167 coefficients [I]). It is under- 
stood that it is not even possible to speak about the generalization of relationships so 
difficult to review. 

Dependences obtained on the basis of the conception of the thermodynamic similarity 
of substances are more promising in this sense. The main statement in this method was formu- 
lated by van der Waals in the form of the celebrated law of corresponding states. As is 
known [i, 2], this law can be extended to any other, non-van der Waals substance if only 
their equation of state contains two individual parameters (constants) in addition to the 
specific gas constant. 

Multiparametric equations of state must be used in investigations encompassing a broad 
range of variation of physical conditions for real substances. However, if the investigation 
is limited to a narrower range of state parameter variation (the limits of one phase, say), 
then in many cases it turns out to be possible to be satisfied by three constants. There- 
fore, in principle the possibility is created for separating groups of similar substances 
according to a criterion on identity of the values of an appropriate similarity criterion. 
The critical coefficient of compressibility is taken most often as such a criterion. Other 
generalized parameters [i] are also utilized recently for this purpose. 

Any macroscopic properties for thermodynamically similar substances can be represented 
in dimensionless form as universal functions of reduced parameters. This permits not only 
the computation of properties of some substances according to the same properties of others, 
but also the modeling of sufficiently complex processes (the transfer process [2]). The 
main difficulty that occurs here is in the separation of the groups of thermodynamically 
similar substances. It should be acknowledged that no sufficiently reliable method of solv- 
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ing this problem exists at this time. All this obliges examination of the practical reali- 
zation of the thermodynamic similarity method as a very approximate approximation. 

The theory of thermodynamic similarity is a particular case of applying generalized 
analysis. Values of the thermodynamic parameters at the critical point are used here most 
often as the reference scales of variables, which corresponds to the method of character- 
istic scales [3]. Selection of these scales is dictated substantially by considerations 
of convenience, since the critical parameters for many substances are determined with a suf- 
ficiently high degree of accuracy (with the exception, perhaps, of the specific volume). 
To represent the appropriate equations of state in dimensionless form in courses on thermo- 
dynamics, a connection is ordinarily set up between the critical parameters and the indi- 
vidual constants of the equation under consideration by using conditions at the critical 
point 

{ Op / cr I 02p \ c r  
= 0 ;  ~ O v ~ / ( . ~ T  = 0 .  (1 )  OV' 'T  

A simpler and more natural means from the viewpoint of generalized analysis can be proposed 
here that is not associated with going over to conditions of the type (i). For instance, 
for the van der Waals equation of state 

/ a_ , p  , ( v - - b ) = R T  ( 2 )  

t h e  c o r r e s p o n d i n g  i n d e p e n d e n t  e q u a t i o n s  o f  s c a l e  r e l a t i o n s  [3,  4] can  be w r i t t e n  in  t h e  form 

from which there follows directly 

p , v ,  = p , b  -- a _ R T , ,  (3 )  

where the quantities 

(p+ + v$2)(v+ - -  1) -- T+, (4) 

p ,  = a/b2; v~, = b; T ,  = a/(bR). (5 )  

are utilized as characteristic pressure, specific volume, and temperature scales. 

It is clear at once that quantities of the type (5) or critical parameter values related 
to them cannot be chosen as reference scales for the state domain of the substance that is 
close to an ideal gas in its properties. The substance properties are quite specific here 
because certain physical effects degenerate completely. Among them are the internal (co- 
hesive) pressure and the finiteness of the molecule sizes whose influence is taken into ac- 
count in the equations of state of real substances by appropriate individual parameters (the 
constants a and b in the van der Waals equation, say). 

At the same time, despite the simplicity of the thermodynamic relationships for an ideal 
gas, their examination on the basis of applying generalized analysis methods can turn out 
to be quite useful. This is explained first by the circumstance that many fundamental state- 
ments of thermodynamics, the foundation for the selection of the properties of a thermometric 
body, the construction of an absolute temperature scale, the properties of entropy, etc., 
are related closely to precisely the problem of the existence and the study of the properties 
of an ideal gas. 

Before proceeding to the solution of these problems, we briefly examine the apparatus 
of generalized analysis that will henceforth be utilized. We speak about the scale relations 
equations, i.e., about the relationships that connect the reference scales of the variables 
and parameters of the problem. The system (3) is an example of such relationships obtained 
from the equations of the problem by using proportional transformations of variables [3, 
4]. If the equations of the problem are not known, then the defining equations of dimen- 
sional analysis can be utilized for this purpose with the subsequent elimination of reference 
scales of those primary quantities that do not enter directly into the list of essentials, 
from them [5]. All the reference scales are initially assumed not defined, which produces 
additional possibilities for making the solution universal and makes the method more flexible. 

Two modes of ultimately making the solution universal exist [3, 4]: self-similarity 
and a self-similar (similar) solution. Self-similarity is understood to be the limit case 
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of degeneration of all the criteria of the problem. There follows directly from the condi- 
tion of incontrovertability of the system of equations of scale relations that the number 
of equations of the scale relations should not exceed the number of variables being trans- 
formed in this case. If the form of the desired function can be determined or the transforma- 
tion of variables for which the "dimensionality" of the problem is diminished can be realized 
(i.e., the degeneracy of the independent variable is clarified) on the basis of generalized 
analysis, then this problem has a self-similar (similar) solution. It is most often neces- 
sary to deal with the passage from a two- to a one-dimensional problem. The partial differen- 
tial equations are here transformed into ordinary differential equations. However, this 
circumstance, that is of primary value in many areas of physics and engineering, is again 
not very essential for the application of generalized analysis to thermodynamics. For the 
problem to have a self-similar solution it is sufficient that the number of scale relations 
equations be less than the number of variables being transformed. Those equations should 
here be eliminated from the number of scale relations equations that result in the appear- 
ance of criteria containing only physical parameters (see [3] for more details). It must 
be noted that a self-similar (similar) solution can be obtained in the case of the one-dimen- 
sional problem only in the form of a power-law or logarithmic function [3, 4]. 

Thus, returning to the main topic of the paper, we proceed to a discussion of one of 
the key thermodynamic problems that is formed, as follows in conformity with the structural- 
ly logical system of constructing thermodynamics [6] that we assumed (a system based on the 
hypothesis of the existence of thermal coordinates of state and, therefore, a thermal inter- 
action potential). To set up requirements whose satisfaction assures realization of the 
necessary and sufficient conditions for temperature identification is empirical, determined 
directly in terms of measurement of certain other quantities (the thermometric properties), 
and absolute (thermal potential), independent of the individual characteristics of the thermo- 
metric substance. 

Later, just a thermally deformed system will be examined. It is consequently natural 
to try to choose a deformation parameter (pressure, volume, or some function of these quanti- 
ties) as the thermometric property. 

The state of a thermally deformed system is determined by giving two coordinates, the 
volume v and entropy s. Each of the potentials is here a single-valued function of them: 

p = p ( v ,  s); T = T ( v ,  s). (6)  

T a k i n g  i n t o  a c c o u n t  t h a t  t h e  a b s o l u t e  t e m p e r a t u r e  T s h o u l d  be a s s o c i a t e d  u n i q u e l y  w i t h  t h e  
e m p i r i c  0 and e l i m i n a t i n g  t h e  e n t r o p y ,  we o b t a i n  f r o m  (6)  

f(p, v, 0)= 0. (7) 

The thermometric substance will be the closer to the absolute, the less the individual char- 
acteristics enter into its definition. Therefore, from the viewpoint of generalized analysis 
the selection of an optimal thermometric substances reduces to seeking that of its states 
for which the problem of determining the specific mode of the equation of state allows of 
ultimate universalization, i.e. ~ has a self-similar solution. Test shows that in the simplest 
case an equation of state of the type (7) contains just one dimensional constant. Most often 
used as this is the specific gas constant R. From dimensionality formulas of the quantities 
essential for the problem under consideration the following system of scale relations equa- 
tions can be obtained (the reference scales of the appropriate variables are denoted with 
an asterisk): 

m, a 
' m, %0, ( 8 )  

E l i m i n a t i n g  t h e  p r i m a r y  q u a n t i t i e s  n o t  e n t e r i n g  in  t h e  l i s t  o f  e s s e n t i a l s  (mass  m.,., t i m e  z.,., 
e x t e n s i o n  ~ , )  f rom t h i s  s y s t e m  o f  s c a l e s ,  we o b t a i n  j u s t  one s c a l e  r e l a t i o n s  e q u a t i o n  in  t h e  
form 

R -  p,v.  
o. ( 9 )  

We h a v e  t h r e e  t r a n s f o r m a b l e  v a r i a b l e s  c o n n e c t e d  by a s i n g l e  e q u a t i o n ;  c o n s e q u e n t l y ,  t h e  
d e s i r e d  f u n c t i o n  i s  e i t h e r  a p o w e r - l a w  o r  l o g a r i t h m i c  f u n c t i o n  e x a c t l y  as  f o r  t h e  o n e -  
d i m e n s i o n a l  p r o b l e m .  I n d e e d ,  t h i s  c a s e  can  be c o n s i d e r e d  as  t h e  s u c c e s s i v e  p a s s a g e  f i r s t  
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from a two- to a one-dimensional problem of general form, and then to a degenerate prob- 
lem for which the specific form of the desired function can be determined on the basis 
of generalized analysis. In other words, this solution can be represented in the form 

pv . = A~ = cons t .  ( 1 0 )  
RO 

A n a l o g o u s l y  (on  t h e  b a s i s  o f  d i m e n s i o n a l i t y  f o r m u l a s  f o r  t h e  i n t e r n a l  e n e r g y  c o n s i d e r e d  
a s  a f u n c t i o n  o f  v and 0 ) ,  we have  f r o m  t h e  e q u a t i o n s  o f  s c a l e  r e l a t i o n s  

. ,  & g & 
- -  7 ; v , - - - - ~ ;  R - -  

z ,  m ,  ~ 0 ,  (ii) 

u 
- -  = A2 = const. ( 12 )  

R0 

the equation 

For A I = i, Eq. (i0) agrees with the Clapeyron equation. However, it must be emphasized 
that (i0) is related continuously to the relationship (12) that sets up a linear dependence 
between the internal energy and the empirical temperature. Therefore, the equation of state 
of a substance containing just one dimensional constant does not correspond to an ideal gas 
but is its particular case, a perfect gas (an ideal gas with constant specific heat). The 
Clapeyron equation for the general case of an ideal gas should apparently be considered ap- 
proximate even in the case when the internal energy of the substance depends only on the 
temperature (but this dependence is not linear). This is confirmed sufficiently well by 
comparing experimental data for monatomic (with almost constant specific heat) and those 
gases (di- and multiatomic) whose specific heat varies noticeably with temperature. 

Although the specific gas constant has different values for each gas, it is not fully 
an individual constant of any substance. Its appearance among the parameters of the problem 
is explained primarily by the fact that the specific and not the molar values of the additive 
quantities are considered here. However, this constant can generally be eliminated from 
the conditions of the problem by using a known recipe, by translating one of the primary 
quantities (the temperature in this case) into a category of secondary quantities [5]. If 
an energetic temperature unit is introduced following Bridgman [7], then (by using specific 
quantities as before) we rewrite the system of scale relations equations (8) as follows: 

- m--2-* ; v . - - - l ~ .  % ,  = - - Z ~ ,  ( 13 )  
P* - ~ l ,  m ,  ~ 

from which, by the usual procedure, we obtain 

pv = A~O, (14) 

and from system (ii), respectively, 

u/O = &.  (15)  

Expressions (14) and (15) are interesting in the respect that they do not generally contain 
any individual characteristics of the substance. 

The conditions to obtain relationships containing the entropy on the basis of a genera- 
lized analysis are rather more complex. The elementary quantity of heat is determined by 
the expression 

dq = Tds, (16)  

from which there follows directly 

q ,  = T ,  s , .  ( 17 ) 

If it is taken into account that from the equation for the first principle of thermodynamics 

we obtain 

dq =: du + pdv (18)  

q, = u, =: p ,v , ,  (19) 
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then we rewrite the relationship (17) to identify the reference scales of the temperature 

8, and T, in the form 

u,  = O,s,. (171 ) 

As is easy to see, when using the energetic temperature unit, (17) means that the entropy 
is a dimensionless quantity. This circumstance indicates that relationships containing the 
entropy cannot be obtained directly by using generalized analysis. In this connection, it 

is interesting to note that application of the apparatus of generalized analysis to relation- 
ships containing the entropy results in an internal contradictory system of scale relations 
equations. This is characteristic also for equations of the type (6) and for their analogs 
represented in the more customary form 

s = s ( v ,  0), (20) 

i . e . ,  e x p r e s s i o n s  in  which  t h e  e n t r o p y  i s  f o r m a l l y  a d i m e n s i o n a l  q u a n t i t y .  I t  must  be s a i d  
that such a situation must also be encountered in other cases of the application of generalized 
analysis to solve physical problems. The best-known example is the problem of the logarithmic 
profile of the average velocity in a near-wall turbulent stream. A method is known which 
can sometimes be used to bypass the difficulties arising successfully. To do this, one should 
go from consideration of the function itself over to examination of the derivative (deriva- 
tives). Such derivatives for the relationship (20) are 

( ~ =h(v, o), 
{ Os ! _ g g L  = r (v, o). 

21) 

[22 

Ordinarily it is possible to obtain 

(,,s) (as) 
-ag0=-g-; -a-g~= o 

ds= \ Ov / o + .-~ ~dO 
(23)  

by using generalized analysis and after integration 

As = Aa( lnv+A~ln0 ) .  (24)  

I f  we s t a r t  f rom t h e  s c a l e  r e l a t i o n s  e q u a t i o n s  c o n t a i n i n g  t h e  s p e c i f i c  gas  c o n s t a n t ,  
t h e n  in  t h i s  c a s e  (24)  can be r e p r e s e n t e d  in  t h e  form 

As = A a R ( l n v 4 - d ~ l n  0). ( 2 4 ' )  

Here t h e  e n t r o p y  has  t h e  same d i m e n s i o n a l i t y  as  t h e  q u a n t i t y  R. I f  we s e t  A a = i and A 4 = 
cv /R ,  t h e n  (24)  a c q u i r e s  i t s  u s u a l  fo rm:  

A s =  R l n v + G ! n 0 .  (26" )  

Briefly, the absolute temperature can be defined as the integrating divisor for the 
elementary quantity of heat that does not contain any individual characteristics of the 
thermometric substance and is a thermal interaction potential. It is easy to see that a 
perfect gas satisfies all these requirements as a thermometric substance; consequently, 
the temperature of such a gas can be identified with the absolute temperature. A special 
proof is not required here that this temperature is an integrating divisor for the elementary 
quantity of heat since any of the relationships of the type (24) determines the entropy 
of a perfect gas as a function of the state. It is understood that this proof can be realized, 
if desired, by the usual manner. 

It should again be emphasized that we speak of precisely the perfect gas temperature 
and not of the ideal gas temperature. As already noted, the Clapeyron equation in the more 
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general case of an ideal gas with variable specific heat should be considered as approximate 
since more than one constant will be contained here in the conditions of the problem. 

The natural question occurs of whether utilization of the gas constant as the fundamental 
constant of the problem is the uniquely possible solution and whether there are generally 
other variants in the selection of the thermometric body. This question can be answered 
affirmatively at once, since one such Variant is known in physics, where the thermodynamics 
of equilibrium radiation comes to mind. 

In examining this problem we start from the hypotheses ordinarily accepted [8]. We 
will consider radiation filling a certain cavity to be a photon gas in a state of thermal 
equilibrium with the surrounding bodies. Since a photon has no rest mass, the specific 
(referred to unit mass) values of the quantities cannot possibly be used here. The total 
values of the energy, entropy, and volume will be used to determine the properties of the 
appropriate thermodynamic system together with the equilibrium radiation temperature and 
light pressure. Just one dimensional constant, the Stefan-Boltzmann constant o, will be 
among the arguments of the problem in addition to the variables. By using generalized analy- 
sis we set up the equation of state of the system under consideration as well as certain 
other relationships. 

First, we compile the system of Scale relations equations on the basis of the defining 
equation. None of the defined quantities corresponding to the International System of Units 
(SI) will certainly be selected at all as primary. By conserving their number, those may 
be examined that will be most convenient for this specific problem. The system of scale 
relations equations for the pressure as a function of the volume and entropy has the following 

form: 

U, U. U, 
p , - -  ; a =  -" ; S , =  " (25)  

V, V ,T~ T ,  

Eliminating the reference scales of quantities not entering directly into the desired depend- 
ence (U, and T,) from system (25), which is equivalent to eliminating the dimensionalities of 
the corresponding primary quantities, we obtain 

3V ' # S ~  (26) 
P* = ~V~ 

and 

p , = [ (  V . S ) (27) 
p,  V, ' S ,  " 

The three variables turn out to be related only by the one equation (26); consequently, 
even here the passage from the two-dimensional problem (27) is first possible to a one-dimen- 
sional problem of general form 

~f i . 
* 3 5 , 

P - - f l (  ~ ~'P* i '  (28)  
p, S / 

and then to a degenerate one-dimensional problem whose solution can be represented in the 
form of the power-law function 

pV4/3 ~1/3 
---B~. (29)  $4/3 

Expressions for the temperature and internal energy are obtained in an analogous manner: 

TV l / 3 ol/a 
_ B2 ' ( 3 0 )  

31/3 

UV I/a ~1,3 
-- Ba, (31)  S-t,3 

and as  a c o n s e q u e n c e  o f  c o m p a r i n g  r e l a t i o n s h i p s  ( 2 9 ) - ( 3 1 )  

U 
-- -- o T  ~, (32) 
g 
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B1 U 
P - -  ( 3 3 )  

B~ V 

Expression (32) contains no dimensionless constants since (without limiting the generality 
of the problem formulation) it is included in the constant o. Specific properties of the 
temperature as an integrating divisor for the elementary quantity of heat can be used to 
determine the numerical value of the quantity BI/B a. Consequently, we have 

d S - -  dQ _ 1 d U @ .  p dV ( 3 4 )  
T T T 

and, therefore, the condition 

I 

/ aV , 

should be satisfied. It is easy to see that 

and, correspondingly, 

B1/B ~ ---- 1/3 ( 3 6 )  

P _ 1 U (33') 
3 V 

are obtained from a comparison of (35) with (32) and (33). This last equation is the rela- 
tionship between the light pressure and the volume energy density known from electrodynamics. 

In certain cases the power-law dependences analogous to relationships (29)-(33) for 
the photon gas can be obtained even for an ordinary perfect gas. However, discussion of 
the questions associated with this is beyond the scope of this paper. 

NOTATION 

a, b are constants in the van der Waals equation of state; Cv, the isochoric specific 
heat; s the extension; m, the mass; p, the pressure; q, the specific heat; R, the specific 
gas constant; S, the entropy, s, the specific entropy; As, the increment in the specific 
entropy; T, the absolute temperature; U, the internal energy; u, the specific internal energy; 
V, the volume; v, the specific volume; o, the Stefan-Boltzmann constant; Q, the empirical 
temperature; T, the time. Subscripts: cr, critical parameters; *, reference scales of 
appropriate quantities; +, dimensionless quantities. 

i. 

. 

3. 

4. 

. 

6. 
7. 
8. 
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